ANALYSIS OF TWITTER DATA USING MACHINE LEARNING ALGORITHMS
نویسندگان
چکیده
Sentiment analysis is one among the distinguished fields of knowledge and pattern mining that deals with identification sentiment within text. The main challenges in are word ambiguity multi polarity. problem to define polarity because for words context dependent. tweets initially preprocessed. preprocessing includes removal stop words, lower case conversion. then passed feature extraction techniques. Then data splitted as training testing data. trained different machine learning algorithm like Naive Bayes. Support Vector machine, Random forest, Decision Tree k-NN algorithm. accuracy obtained using random Tree, Logistic regression 80%, 77%, 72%, 61% ,56% 78%. naïve bayes has achieved a better when compared other KEYWORDS: SVM, bayes, tree, forest
منابع مشابه
Spatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms
PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...
متن کاملComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملImproving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features
Heart is one of the most important members of the body, and heart disease is the major cause of death in the world and Iran. This is why the early/on time diagnosis is one of the significant basics for preventing and reducing deaths of this disease. So far, many studies have been done on heart disease with the aim of prediction, diagnosis, and treatment. However, most of them have been mostly f...
متن کاملImproving Sentiment Analysis in Twitter Using Multilingual Machine Translated Data
Sentiment analysis is currently a very dynamic field in Computational Linguistics. Research herein has concentrated on the development of methods and resources for different types of texts and various languages. Nonetheless, the implementation of a multilingual system that is able to classify sentiment expressed in various languages has not been approached so far. The main challenge this paper ...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EPRA international journal of research & development
سال: 2023
ISSN: ['2455-7838']
DOI: https://doi.org/10.36713/epra12585